
Having fun with apple’s 
IOKit	


Ilja van sprundel <ivansprundel@ioactive.com>	




who am I	


•  Ilja van sprundel	


•  IOActive 	


•  netric 	


•  blogs.23.nu/ilja	




Agenda	

•  Introduction	


•  what is the IOKit	


•  why	


•  UserClients	


•  entry points 	


•  marshaling data 	


•  api’s usage	


•  potential for abuse	


•  conclusion	


•  Q&A	




Introduction	


•  Preliminary research 	


•  IOKit is in kernel code for drivers 	


•  a lot of it ends up being auto generated 
code	


•  because of this it’s virtually unauditted 	


•  a new playground :)	




what is the IOKit?	


•  kernel framework 	


• most drivers for OSX use them 	


•  preferred over others (nkext’s, BSD)	


•  offers wide range of api’s to do things in 
drivers	




what is the IOKit?	
•  C++ code (well, a subset really)	


•  no exceptions, templates, multiple 
inheritance	


•  it’s ment to look like something userland 
dev’s are willing to touch 	


•  has a well defined interface for interaction 
with userland (passing data back and forth, 
usually for configuration)	


•  functionally not unlike NT’s IOMgr	


•  that’s what I’ll be talking about 	




why ?	


• Why look at the IOKit ? 	


•  juicy target 	


•  very little coverage 	




UserClients	


•  Almost all communication with the IOKit is 
done through UserClients	


•  A C++ class 	


•  All drivers that have UserClients Inherit 
from IOUserClient, to make their own 
userclients 	


•  abstracted away the real communication	




UserClients	




UserClients	


•  3 ways of inputting data really 	


•  old UserClient (synchronous)	


• New UserClient (10.5.x and above) 
(asynchronous)	


•  add an IOKit systemcall	




Entry points: Mach	


•  In kernel mach server	


•  need to send a mach message 	


•  port’s receiver has to be kernel space 	


•  when this is true ipc_kobject_server() is 
called	




Entry points: Mach	


•  Here’s where things get a little wobbly	


• most of this stuff is Autogenerated MIG 
(mach interface generator) code!	


•  unless you compile the code you won’t see 
it	


•  ~20 in kernel rpc services	




Entry points: IOKit	

•  The mach message header id has to match the 

IOKit one. 	


•  once this is done, all input is passed on to the 
IOKit subsystem ()	


•  iokit_server_routine	


•  specific IOKit functions have numbers (there’s 71 
of them, all auto generated!)	


•  these are also encoded in the message header id	




Entry points: IOKit	

•  71 functions allow the buildup of a 

protocol	


•  which driver to talk to 	


•  info about the driver 	


•  how to marshal data	


• mapping in data 	


•  ... 	




Entry points: IOKit 
syscalls	


•  IOKit syscalls can also export systemcalls 	


•  iokit_user_client_trap()	




Entry points: IOKit 
syscalls	


•  user has to have an open userclient 
connection	


•  specifies the syscall he wants by number	


•  allows for up to 6 arguments	


•  arguments are passed directly to syscall	


•  no validation done, it could be anything	




Marshaling data	


•  passing data to IOKit UserClient methods	


•  index number for the method	


•  input and output 	


•  2 types of data	


•  scalar 	


•  structure	




Marshaling data	


•  gives 4 combinations in total 	


•  input scalar, output scalar 	


•  input scalar, output struct	


•  input struct, output scalar	


•  input struct, output struct 	




Marshaling data	


•  once everything is put in the right structurs	


•  the marshaling code calls the 
externalMethod() method on the 
UserClient	


•  this one will call it’s actual UserClient 
Method, based on the index	




Marshaling data	


•  Here’s how it looks:	




Marshaling data	


• mapping index numbers to methods and 
syscalls	


•  UserClient’s are supposed to implement 2 
functions to do the mapping:	


•  getExternalMethodForIndex(uint idx);	


•  getExternalTrapForIndex(unit idx);	




Marshaling data	


• Method index mapping	




Marshaling data	


•  syscall index mapping	




Marshaling data	


•  index mapping bug:	


•  off-by-one :)	




Api’s	


•  IOKit is a massive framework 	


•  has api’s for almost everything 	


• most of it is it IOLib.cpp	


•  will talk about some of them 	




api’s: memory 
allocation	


•  IOMalloc	

•  void * IOMalloc(vm_size_t size);	


•  IOMallocAligned 	

•  void * IOMallocAligned(vm_size_t size, vm_size_t alignment);	


•  IOMallocContiguous	

•  void * IOMallocContiguous(vm_size_t size, vm_size_t alignment, IOPhysicalAddress * physicalAddress)!



Api’s: Memory 
allocation	




Api’s: Memory 
allocation	




Api’s: Memory 
descriptors	


• When marshaling data, memory 
descriptors are used 	


•  allows both user and kernel to share data 	


•  not unlike NT’s MDL’s (Memory descriptor 
lists)	




Api’s: Memory 
descriptors	




types of bugs	


•  The usual applies 	


•  int overflows	


•  buffer overflows	


•  ...	




types of bugs	


•  Race conditions due to memory 
descriptors being used 	




types of bugs 	


•  format string bugs	


•  IOKit code is really ment to be more open 
towards dev’s who don’t really do low-
level kernel stuff 	


•  offers a mutlitude of api’s	


•  including format functions	




types of bugs	


•  IOLog() is a great example 	


•  google (codesearch) dork: 	


• IOLog\([^”]*\) lang:c++	




fmt bug examples	




fmt bug examples	




fmt bug examples	




potential for abuse	

•  summary:	


•  indexes for methods need to be validated by driver (in 
getExternalMethodForIndex())	


•  indexes for methods need to be validated by driver (in ExternalMethod())	


•  indexes for systemcalls need to be validated by driver (in 
getExternalTrapForIndex())	


•  arguments to syscalls not validated in any way	


•  driver should watch out with format functions in IOLib (IOLog, printf, 
OSKextLog, ...)	


•  IOLib’s malloc wrappers need some work 	


•  Race conditions with shared memory	




Conclusion	
•  IOKit is an interesting 	


•  relatively new (compared to IOMgr, unix 
ioctl’s, ...)	


•  Has had very little scrutiny so far, lots of 
potential for bugs in framework itself	


•  not quite sure of the c++ thing -imo kernel 
code should be plain c- lots of potential for 
driver bugs	


•  The entrypoints are virtually un-auditted, 
since the code is autogenerated on compile 



Conclusion	


•  some positive notes 	


• mach copies all userdata to kernel, so 
generally no user pointers passed to IOKit 
(capture)	


•  ofcourse there might be embedded 
pointers in the driver specific code 	




food for though/todo	


•  fuzzing (working on it, took more time 
then I figured I needed)	


•  IOKit 71 callbacks	


•  this code looks really really naive	


•  looks like it’ll have lots of bugs 	


•  design bugs ? 	




Questions ? 	



